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A B S T R A C T

Dependence between studies in meta-analysis is an assumption which is imposed on the structure of hierarchical
Bayesian meta-analytic models. Dependence in meta-analysis can occur as a result of study reports using the same
data or from the same authors. In this paper, the hierarchical Bayesian delta-splitting (HBDS) model (Steven and
Taylor, 2009), which allows for dependence between studies and sub-studies by introducing dependency at the
sampling and hierarchical levels, is developed using Bayesian approaches. Parameter estimation obtained from
the joint posterior distributions of all parameters for the HBDS model was conducted using the Metropolis within
Gibbs algorithm. The estimation of parameters for simulation studies using R code confirmed the consistency of
the model parameters. These parameters were then tested successfully on studies to assess the effects of native-
language vocabulary aids on second language reading as a case study.
1. Introduction

Meta-analytic models have been developed to incorporate heteroge-
neity within studies, between studies or between subgroups in order to
obtain an overall conclusion (Kontopantelis and Reeves, 2012; Lunn
et al., 2013; Newcombe et al., 2012; B€ohning et al., 2014). Heterogeneity
within and between studies due to differences in some aspects of the
research, such as the statistical, methodological and clinical approaches,
is a crucial issue which needs to be overcome when attempting to
conduct a meta-analysis (Abrams et al., 2005; Dohoo et al., 2007). Fre-
quentist and Bayesian statistical methods are the two techniques used to
accommodate heterogeneity in meta-analysis (Lunn et al., 2013). The
Frequentist framework is used when heterogeneity arises only based on
the data, By contrast, Bayesian approaches consider the true underlying
parameter value as a random variable when conducting meta-analysis.

An increasing variety of Bayesian approaches for estimating param-
eters have been developed in meta-analysis (Blackwood et al., 2012;
Chen and Pei, 2009; Lunn et al., 2013; Robinson et al., 2009). In all three
cases, a hierarchical Bayesian model was used because of its predictive
nature. For example, meta-analysis using the Bayesian approach was
employed by Chen and Pei (2009) to assess the effectiveness of a tumour
necrosis factor (TNF) polymorphic marker in determining risk of
).
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hepatitis C virus (HCV) infection; providing a more definitive association
between TNF polymorphism and the risk of HCV infection. Lunn et al.
(2013) used the Metropolis-within-Gibbs algorithm to estimate the joint
posterior distribution of all parameters for the hierarchical Bayesian
model. A Markov chain was constructed to generate the parameters for
the model using the formulation of the algorithm. The model was applied
to data on the effect of diuretics on the risk of pre-eclampsia during
pregnancy using the OpenBugs meta-analysis package.

The meta-analysis approaches that have been applied to gene
expression studies provide examples in which dependency, originating
both at the sampling level and at the hierarchical level, is accommodated.
An example of this is found in the meta-analysis performed by Stevens
and Nicholas (2009). In this meta-analysis, sampling dependence
occurred since multiple measures of differential expression were pro-
duced for each gene using the same sample of data. At the hierarchical
level, dependency occurred because some studies were conducted in the
same laboratory or by the same research team. Gilbert-Norton et al.
(2010) used the hierarchical Bayesian linear model to address some
unresolvable questions about corridor effectiveness using meta-analysis.
A corridor is defined as long, a narrow strip of land which helps in the
movement of species between disconnected areas of their natural habitat.
Gilbert-Norton et al. (2010) used a conservative hierarchical Bayesian
ugust 2020
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model that accounted for sampling and hierarchical dependence to
answer questions about the effectiveness of corridors in increasing
movement of species, comparing their effectiveness for different species
and investigating whether artificially created and maintained experi-
mental corridors were more effective than naturally occurring ones. It
was concluded that corridors existing in the landscape prior to the study
had more movement than those artificially created for the study. The
results suggested that, in general, corridors increase species movement
between disconnected areas of habitat and that maintaining and creating
corridors was worthwhile.

In this paper, we developed the hierarchical Bayesian delta-splitting
(HBDS) model which allows dependency between studies of meta-
analytic. The Metropolis within Gibbs algorithm is approach used to
approximate the joint posterior distributions of all parameters of the
model. Application of the model using the developed algorithm is given to
the effects of native-language vocabulary aids on second language reading.

This paper is organised as follows. The HBDS model is introduced in
Section 2. An approach used to formulate the joint posterior distribution
of the model which was derived by the multiplication of the likelihood
with the prior(s) is discussed in Section 3. The Metropolis within Gibbs
algorithm which was developed to estimate the parameters of interest for
the HBDS model is also given in Section 3. A simulation study for this
model was conducted in which the dependence assumptions were
imposed on the variance-covariance matrix. This simulation study is
discussed in Section 4. The data obtained from the simulation study that
was used to determine and evaluate the performance of known param-
eters for the HBDS model followed by application of the model is pro-
vided in Section 4.

2. The hierarchical Bayesian delta splitting (HBDS) model

Following Dumouchel and Normand (2000) and Dumouchel and
Harris (1983), Stevens (2005) extended the hierarchical Bayesian
approach to the non-independent case. This model can be used to obtain
overall conclusions from a meta-analysis of several studies in which a
dependence structure occurs due to the use of the same data at the
sampling level and the same laboratory at the hierarchical level.

The Hierarchical Bayesian Linear Model (HBLM) framework incor-
porating the l-dependence group (Stevens and Taylor, 2009) is summa-
rized as follows:

~θ ¼ Xβ þ δþ ε

¼ θ' þ ε

δ � N
�
0; τ2I

�
ε � Nð0;VÞ
θ'jβ; τ � N

�
Xβ; τ2I

�
βjτ � Nðb;DÞ
D ¼ diag

�
d21 ;⋯d2p

�
τ2 � Inverse Gammaðq; rÞ

(1)

where ~θnx1 is a vector of effect size estimates, ~θ ¼ ð~θ1; ~θ2;…; ~θnÞT ;(n is the
number of studies; θ

0
nx1 is the vector of the underlying effect sizes being

estimated in each study, θ' ¼ ðθ'1; θ'2;…; θ'nÞ
T
; Xis the nxp design matrix

representing known (covariate) differences between studies, X ¼24 x1;1 … x1;p
⋮ ⋱ ⋮

xn;1 … xn;p

35
nxp

; βpx1is a vector of parameters representing the ef-

fects of the different covariates (or unknown parameters to be estimated),
β ¼ ðβ0; β1;…; βp�1ÞT(p is the number of different covariates); δnx1 is the

vector of random deviation of Xβ from θ' , θ' ¼ Xβþ δ, δ ¼
ðδ1; δ2;…; δnÞT ;and εnx1 is the vector of sampling errors for each study,
ε ¼ ðε1; ε2;…; εnÞT .
2

Stevens (2005) stated that dependence can occur at the level of
groups of studies (or substudies). For example, in the case study per-
formed by Joyce (1997), dependence between substudies occurred since
the English test was given to the same group of French students in the
first second and third semesters. In these cases it is not appropriate to
assume that δ � Nð0; τ2IÞ is independent because of dependency between
groups of substudies. Following Stevens (2005), this assumption for the
dependence group can be written as follows δ � Nð0;ΔÞ where Δ is as
defined in Eq. (2). This hierarchical dependence structure can be
accommodated by essentially splitting the δ, into two components: a
study (or experiment or researcher) component and a
substudy-within-study component. For this reason, this approach may be
referred to as "delta-splitting".

Equivalently, the variance-covariance matrix of the vector δ can be
given a block diagonal structure Δ instead of the previous diagonal
structure τ2I; thus

Δ¼

0BBBBBBBBBBBBB@

0@ τ2 φ
⋱

φ τ2

1A 0 … 0

0

0@ τ2 φ
⋱

φ τ2

1A
… 0

… 0 ⋱ …

0 0 …

0@ τ2 φ
⋱

φ τ2

1A

1CCCCCCCCCCCCCA
(2)

The blocks on the diagonal correspond to separate dependency
groups, and it is possible that each block may represent several depen-
dent studies. As before, τ2 represents the level of variability between
what each of the studies are measuring ðθ'Þ. φ represents the covariance
between studies within dependency groups. Let Δ denote the resulting
block-diagonal variance-covariance matrix for vector δ, with φ repre-
senting the hierarchical covariance between related sub-studies within
the same study (or studies by the same researcher). Then the delta-
splitting meta-analysis linear model assumes

~θ � NðXβ;ψÞ;
ψ ¼ V þ ΔI þ φM;

(3)

where M is an appropriate 0–1 matrix (with 1s corresponding to the
nonzero off-diagonal values in the diagonal blocks of Δi).

Stevens and Taylor (2009) developed the meta-analytic model to
accommodate the variation in studies. This model was based on the
modification of the HBLM to incorporate the covariance delta-splitting
framework. The dependence structure was imposed on the model using
the variance-covariance matrix. The model is namely the hierarchical
Bayesian delta-splitting (HBDS) model and presented in Eq. (4).

The hierarchical Bayesianmeta-analysis approachwith a delta-splitting
framework (Stevens and Taylor, 2009) can be summarized as follows:

~θ ¼ Xβ þ δþ ε

¼ θ' þ ε

δ � Nð0;ΔÞ
Δ ¼ Δðτ;φÞ¼ τ2I þ φM

ε � Nð0;VÞ
θ'jβ;φ; τ � NðXβ;ΔÞ
βjφ; τ � Nðb;DÞ
D ¼ diag

�
d21 ;⋯d2

p

�
φjτ � PðφjτÞ
τ � PðτÞ

(4)

where ~θnx1 is a vector of effect size estimates, ~θ ¼ ð~θ1; ~θ2;…; ~θnÞT (n is the
number of studies); θ

0
nx1 is the vector of the underlying effect size being
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estimated in each study, θ' ¼ ðθ'1; θ'2;…; θ'nÞ
T
; X is the nxp design matrix

which represents known (covariate) differences between studies, X ¼24 x1;1 … x1;p
⋮ ⋱ ⋮

xn;1 … xn;p

35
nxp

; βpx1 is a vector of parameters which represent the

effects of the difference covariates (or unknown parameters to be esti-
mated), β ¼ ðβ0; β1;…; βp�1ÞT (p is the number of different covariates);

δnx1 is the vector representing the random deviation of Xβ ,θ' ¼ Xβþ δ,
δ ¼ ðδ1; δ2;…; δnÞT ; εnx1 is the vector representing the sampling error
within each study, ε ¼ ðδ1; δ2;…; δnÞT ; Δ is a block-diagonal matrix of the
form given in Eq. (2); Inxn is the n x n identity matrix andMnxn is a matrix
with 0s on the diagonal and 1s in those off-diagonal entries which
represent the correlation between studies having the same author. Note
that Δ ¼ τ2Iþ φM.

3. Bayesian analysis

Formulation of the joint posterior distributions of all parameters for
the model is derived in this section.

3.1. Posterior analysis of HBDS model using Metropolis within Gibbs

This section presents the hierarchical Bayesian delta-splitting (HBDS)
model which can be used to obtain overall conclusions in meta-analysis.
Heterogeneity between studies which are dependent as a result of the
sharing data and authors or laboratories can be accommodated by this
model. This model was developed by Stevens and Taylor (2009) by
essentially splitting the δ in Eq. (1) into two components: a study (or
experiment or researcher) component and a substudy-within-study
component. The variance-covariance (Δ) component in Eq. (3) was
split into two parameters to overcome the dependence structure in the
meta-analysis.

Recall that the HBDS model in (4) can be expressed as follows:

~θ � MVNðθ';VÞ
εðlÞ � MVNð0;VÞ
θ' � MVN

�
Xβ; τ2I þ φM

�
δ � MVN

�
0; τ2I þ φM

�
β � MVNðb;DÞ

φjτ � Unif
�
� τ2

ðK � 1Þ; τ
2

�
τ � log� logisticðc0; 1Þ

(5)

where ~θnx1 is the vector of effect size estimates given by ~θ ¼
ð~θ1; ~θ2;…; ~θnÞT (n is the number of studies). Let θ

0
nx1 be the vector of the

underlying effect size whose components are estimated separately in

each study (i ¼ 1, 2,…, n) given by θ' ¼ ðθ'1; θ'2;…; θ'nÞ
T
. Let X be the nxp

design matrix which represents known (covariate) differences between
the studies:

X ¼

2664
x1;1 x1;2 … x1;p
x2;1 x2;2 … x2;p
⋮ ⋮ ⋱ ⋮
xn;1 xn;2 … xn;p

3775
nxp

(6)

Let βpx1 be a vector of parameters which represent the effects of the
different covariates (or unknown parameters to be estimated),

β¼ �
β0; β1;…; βp�1

�T
; (7)

where p is the number of different covariates. Let δnx1 be the vector of
random deviation of Xβ from θ' , θ' ¼ Xβþ δ, and δ ¼ ðδ1; δ2;…; δnÞT .
Now let εnx1 be the vector of sampling error within each study, ε ¼
3

ðδ1; δ2;…; δnÞT . The matrix τ2I þ φM is a block-diagonal matrix. Here Inxn
is the identity matrix and Mnxn is 0–1 matrix (with 1s corresponding to
the nonzero off-diagonal entries in the diagonal block of τ2Iþ φM) and K
is the size of the largest block on the diagonal of matrix τ2Iþ φM.

The log-logistic distribution used for PðτÞ in Eq. (8) is defined by

PðτÞ¼ c0
ðc0 þ τÞ2; τ > 0 (8)

This is a special case that belongs to an extended two-parameter
family of prior distributions, a so-called location-scale family based on
log(τ).

For τ > 0 and γ > 0, let

Pðτ; δ; γÞ¼ γδτðγ�1Þ

ðδþ τγÞ2; (9)

where δ and γ are the median and shape of τ; respectively. The default
prior distribution corresponds to choosing δ ¼ c0 and γ ¼ 1, such that Eq.
(9) is equal to Eq. (8). This particular selection which was suggested by
Dumouchel and Normand (2000) offers several advantages.

Firstly, the prior has a maximum at 0 and is a decreasing function of τ.
This conforms to the belief that it is definitely possible for τ to be near 0.
The second advantage is that the quartiles of the distribution of PðτÞ are
c0=3, c0 and3c0. As a result, thedistribution is automatically scaled to be in
a sensible range and in the correct units. Moreover, this prior distribution
is right-skewed, with the given quartiles and is highly dispersed (with
infinite expected values for both τ and τ�1). This is consistent with the fact
that τ can be close to zero, but that τ is allowed to vary substantially from
zero when the sampling variances are larger (Stevens and Taylor, 2009).

The analytical form of the joint posterior distribution of all parame-
ters for the HBDS model was derived by multiplying the likelihood with
prior(s). The Metropolis within Gibbs algorithm (Hoff, 2009; Millar and
Meyer, 2000) was used to approximate the parameters in the model. This
algorithm was selected since the conditional posterior distribution of φ
given θ' , β and τ, and the conditional posterior distribution of τ given θ' , β
and φ were not in standard form. The conditional posterior distributions
of θ'; given β, φ and τ2 and the conditional posterior distribution of β;
given θ' , φ and τ2 of the model were estimated using the Gibbs sampler
algorithm.

3.1.1. Posterior Analysis
The joint posterior distribution of all parameters for the model is

Pðθ';β;φ;τj~θÞ∝Pð~θjθ';β;φ;τÞ�Pðθ';β;φ;τÞ
¼Pð~θjθ';β;φ;τÞ�Pðθ'jβ;φ;τÞ�Pðβjφ;τÞ�PðφjτÞ�PðτÞ; (10)

where Pð~θjθ'; β;φ; τÞ is the joint likelihood, Pðθ'jβ;φ; τÞ is the conditional
prior of θ' given β;φ and τ, Pðβjφ; τÞ is the conditional prior of β given φ
and τ, PðφjτÞ is a conditional prior of φ given τ, and PðτÞ is prior distri-
bution of τ. Recall from Eq. (5) that the joint likelihood and priors of the
HBDS model can be expressed as follows.

The joint likelihood is:

Pð~θjθ'; β;φ; τÞ¼ ð2πÞ�n
2jV j�1

2 exp
�
� 1
2
ð~θ� θ'ÞTV�1ð~θ� θ'Þ

	
(11)

where

~θ¼ ½ ~θ1 ~θ2 ~θ3 ~θ4 ~θ5 …
~θn �T ;

θ' ¼ ½ θ'1 θ'2 θ'3 θ'4 θ'5 … θ'n �
T
;

and the dependency is encoded by the variance-covariance matrix. An
example of the form of the variance-covariance matrix is given below.
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6VarðV1Þ 0 0 0 0 … 0
0 VarðV2Þ CovðV2;V3Þ 0 0 … 0 7
V¼

2
66666664

0 CovðV3;V2Þ VarðV3Þ 0 0 … 0
0 0 0 VarðV4Þ 0 … 0
⋮ 0 0 0 VarðV5Þ … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 … VarðVnÞ

3
77777775
:

In the following, the forms of the conditional prior distributions of
each parameter for the HBDS model are discussed.

3.1.2. Conditional prior distribution of θ' given β;φ and τ
The derivation of this prior begins with the variance-covariance

matrix τ2I þ φM where the matrix M has a similar form to the one
shown below:

M¼

2666666664

0 0 0 0 0 … 0
0 0 1 0 0 … 0
0 1 0 0 0 … 0
0 0 0 0 1 … 0
0 0 0 1 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 … 0

3777777775
nxn

:

Using Eq. (5), the conditional prior probability density function of θ';
given β;φ and, is written as

Pðθ'jβ;φ; τÞ¼ ð2πÞ�n
2


τ2I þ φM



�1
2 exp

�
� 1
2
ðθ' � XβÞT�τ2I þ φM

��1ðθ' �XβÞ
	
; (12)

where X and β are as given in Eqs. (6) and (7), respectively.

3.1.3. Conditional prior distribution of β
Using Eq. (5), the conditional prior probability density function of β;

independent of φ and τ, can be written as

PðβÞ¼ ð2πÞ�p
2jDj�1

2 exp
�
� 1
2
ðβ� bÞTD�1ðβ� bÞ

	
; (13)

where

D ¼

26666664
d21 0 … 0

0 d2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … d2

p

37777775
pxp

;

and d1; :::; dp are arbitrary real numbers and b is a vector of arbitrary
real numbers of size px1.

3.1.4. Conditional prior distribution of φ given τ
The next step is the selection of an appropriate prior distribution for

φ; given τ. This distribution is conditional on τ because of the numerical
constraint required to ensure positive definiteness of τ2Iþ φM (Stevens
and Taylor, 2009). Using Eq. (5), the conditional prior distribution of φ;
given τ; is a uniform distribution of the form

PðφjτÞ¼
��

1þ 1
ðK � 1Þ

�
ðτÞ2

	�1

: (14)

3.1.5. Prior distribution of τ
The prior distribution of τ is given in Eq. (8).
Using Eqs. (11), (12), (13), (14), and (8), the joint posterior distri-

bution of all parameters for the HBDS model is given by
4

Pðθ'; β;φ; τj~θÞ¼ ð2πÞ�n
2jV j�1

2 exp � 1
2
ð~θ� θ'ÞTV�1ð~θ� θ'Þ
� 	
� ð2πÞ�n

2


τ2I þ φM



�1
2 exp

�
� 1
2
ðθ' � XβÞT�τ2I þ φM

��1ðθ' �XβÞ
	

� ð2πÞ�p
2jDj�1

2 exp
�
� 1
2
ðβ� bÞTD�1ðβ� bÞ

	
�
��

1þ 1
ðK � 1Þ

�
ðτÞ2

	�1

� c0
ðc0 þ τÞ2: (15)

The following describes the derivation of the conditional posterior
distribution of θ', given β;φ and τ and the conditional posterior distri-
bution of β given θ';φ and τ , from Eq. (15).

3.1.6. Conditional posterior distribution of θ'given β;φ and τ
Using Eq. (15) as detailed in Appendix, the conditional posterior

distribution of θ'jβ;φ; τ is the multivariate normal distribution with mean
μθ' and variance-covariance matrix, Λθ' as given in equations (28) and
(27) (see Appendix). Furthermore, the distribution θ'jβ;φ; τ can be
rewritten in the form θ'1; θ

'
2;…; θ'njβ;φ; τ � Nnðμθ' ;Λθ' Þ where n is the

number of studies.
The conditional posterior distribution of

θ'i


θ'ð�iÞ; β;φ; τ (16)

where θ'ð�iÞ ¼ ðθ'1; θ'2; …; θ'i�1; θ
'
iþ1; …θ'n�1; θ

'
nÞ, the vector parameter

excluding θ'i, can be derived using Theorem 3.31 of Flury (1997). The
parameter of θ' which is normally distributed, θ' � Nnðμθ' ; Λθ' Þ, is parti-
tioned into m ¼ 1 and (n-m) components, θ'i and θ'ð�iÞ, where the size of
these matrices are 1� 1 and (n-1) x 1, respectively. The parameter of μ is
partitioned into matrices ðμθ' Þi and ðμθ' Þ�i with the size 1 � 1 and (n-1) x
1, respectively. The variance-covariance is formed by Λθ' ¼� ðΛθ' Þi;i ðΛθ' Þi;�i

ðΛθ' Þ�i;i ðΛθ' Þ�i;�i

�
nxn

.

As in (Flury, 1997, Theorem 3.31), assumed that ðΛθ' Þi;i is positive

definite, it then follows that the conditional posterior distribution of θ'i,
given θ'ð�iÞ is a variate normal distribution with the parameters

μθ'ijθ'ð�iÞ
¼E

h
θ'i


θ'ð�iÞ

i
¼ðμθ' Þi þðΛθ' Þi;�iðΛθ' Þ�1

�i;�i

�
θ'ð�iÞ � ðμθ' Þ�i

�
(17)

and

Λθ'ijθ'ð�iÞ
¼Cov

h
θ'i


θ'ð�iÞ

i
¼ðΛθ' Þi;i �ðΛθ' Þi;�iðΛθ' Þ�1

�i;�iðΛθ' Þ�i;i: (18)

In summary, the conditional posterior distribution given in (16) is the
normal distribution with mean and variance as shown in Eqs. (17) and
(18), respectively.

3.1.7. Conditional posterior distribution of β given θ';φ and τ

Using Eq. (15), the conditional posterior distribution of β given θ' , φ
and τ is derived by considering β to be a random variable and θ' , φ, τ to be
constants as detailed in Appendix. In summary, the conditional posterior
distribution of βjθ';φ; τ is the multivariate normal distribution with
mean μβand corresponding variance-covariance matrix, Λβ as given in
equations (33) and (32), respectively (see Appendix). Furthermore, the
distribution βjθ';φ; τ may now be rewritten in the form β0; β1;…; βp�2;

βp�1



θ'1; θ'2;…; θ'n;φ; τ � Npðμβ;ΛβÞwhere p is the number of covariates.
The conditional posterior distribution of

βk


θ'1;…; θ'n; βð�kÞ;φ; τ (19)

where βð�kÞ ¼ ðβ0; β1; …; βk�1; βkþ1; …; βp�1Þ, the vector parameter
excluding βk, can be derived using Theorem 3.31 of Flury (1997).
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The parameter of β which is normally distributed, β � Npðμβ;ΛβÞ, is
partitioned into q ¼ 1 and (r-q) components, βk and βð�kÞ, where the size
of these matrices are 1� 1 and (r-1) x 1, respectively. The parameter of μ
is partitioned into matrices ðμβÞk and ðμβÞ�k with the size 1� 1 and (r-1) x
1, respectively. The variance-covariance is formed by Λβ ¼� ðΛβÞk;k ðΛβÞk;�k

ðΛβÞ�k;k ðΛβÞ�k;�k

�
pxp

.

As in (Flury, 1997, Theorem 3.31), assumed that ðΛβÞk;k is positive
definite, it then follows that the conditional posterior distribution of βk,
given βð�kÞ is a variate normal distribution with the parameters

μβk jβð�kÞ ¼E
h
βk jβð�kÞ

i
¼ðμβÞk þðΛβÞk;�kðΛβÞ�1

�k;�kðβð�kÞ � ðμβÞ�kÞ (20)

and

Λβk jβð�kÞ ¼Cov
h
βk jβð�kÞ

i
¼ðΛβÞk;k �ðΛβÞk;�kðΛβÞ�1

�k;�kðΛβÞ�k;k : (21)

In summary, the conditional posterior distribution given in (19) is the
normal distribution with mean and variance as shown in Eqs. (20) and
(21), respectively.

Using Eq. (15), the conditional posterior distribution ofφ given θ' , β and τ
wasformedfromtheproductof thepriordistributionsPðθ'jβ;φ; τÞandPðφjτÞ.

f ðφjθ';β;τÞ∝ð2πÞ�n
2


τ2IþφM



�1
2 �exp

�
�1
2
ðθ'�XβÞT�τ2IþφM

��1ðθ'�XβÞ
	

�
��

1þ 1
ðK�1Þ

�
ðτÞ2

	�1

:

(22)

Unfortunately, in the multiplication of priors in Eq. (22) was in non-
standard form. To overcome this issue, the Metropolis-Hasting algorithm
was used to generate the parameter estimates from φjθ'; β; τ. This al-
gorithm also used to generate the posterior distribution of τ given θ' , β
and φ given in Eq. (23) as the product of the prior distributions
Pðθ'jβ;φ;τÞ;PðφjτÞ and PðτÞ was in non-standard form.

f ðτjθ';β;φÞ¼ ð2πÞ�n
2


τ2IþφM



�1
2 exp

�
�1
2
ðθ'�XβÞT�τ2IþφM

��1ðθ'�XβÞ
	

�
��

1þ 1
ðK�1Þ

�
ðτÞ2

	�1

� c0
ðc0þ τÞ2:

(23)

In the following section, an approximation to the joint posterior dis-
tribution of all parameters for the HBDS model is obtained using the
Metropolis within Gibbs algorithm.
3.2. Metropolis within gibbs algorithm for HBDS model

As the conditionalposterior distributions for τ; givenθ'; β andφ is innon-
standard form, the Metropolis within Gibbs provides an alternative MCMC
algorithm to estimate the joint posterior distribution of the HBDS model.
The steps that were followed to complete this process are listed below.

3.2.1. The algorithm

1. Let θ'
ð0Þ
; βð0Þ;φð0Þandτ2ð0Þ denote the starting point of aMarkov chains.

The value of these starting points can be randomly drawn from a
starting distribution or simply chosen deterministically.

Let j¼ 1, 2,…, t, where t is the number of iterations, i¼ 1, 2,…, n, n is
the number of studies and k ¼ 0, 1, …, p-1, for p is the number of
covariates.

2. θ'ðjÞi given θ'ðj�1Þ
ð�iÞ ; βðj�1Þ

0 ;…; βðj�1Þ
p�1 ;φ and τðj�1Þ, was generated using
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θ'ðjÞi



θ'ðj�1Þ
ð�iÞ ; βðj�1Þ

0 ;…; βðj�1Þ
p�1 ;φ; τðj�1Þ � Nn μθ'i ;Λθ'i
� �
where μθ'i and Λθ'i

are defined in Eqs. (17) and (18), respectively, and μθ'

and Λθ' are defined in equation (28) and (27) (see Appendix).

3. βðjÞk given θ'ðjÞ1 ;…; θ'ðjÞn ; βðj�1Þ
ð�kÞ ;φ and τðj�1Þ was generated:

βðjÞk


θ'ðjÞ1 ;…; θ'ðjÞn ; βðj�1Þ

ð�kÞ ;φ; τ
ðj�1Þ � Nnðμβk ;Λβk Þ

where μβk and Λβk are defined in Eqs. (20) and (21), respectively and μβ
and Λβ are defined in equation (33) and (32) (see Appendix).

Steps 2 and 3 used the Gibbs sampler algorithm. In order to complete
the following steps, the Metropolis-Hasting algorithm was used to
generate the parameters.

4. φðjÞ given θ'ðjÞ; βðjÞ and τðj�1Þ was generated by implementing the
following steps:

a. It was proposed that φ* � Nðφðj�1Þ;ω2
1Þ.

b. The acceptance ratio (probability) for the parameterφwas as follows.

rφ¼
Pðθ'ðjÞ;βðjÞ;φ*;τðj�1Þ

~θ�

Pðθ'ðjÞ;βðjÞ;φðj�1Þ;τðj�1Þ

~θ��Jφ
�
φðj�1Þ�

Jφðφ*Þ

∝



τðj�1ÞIþφ*M


�1

2 exp
�
�1
2
ðθ'ðjÞ�XβðjÞÞT�τðj�1ÞIþφ*M

��1ðθ'ðjÞ�XβðjÞÞ
	



τðj�1ÞIþφðj�1ÞM


�1

2 exp
�
�1
2
ðθ'ðjÞ�XβðjÞÞT�τðj�1ÞIþφðj�1ÞM

��1ðθ'ðjÞ�XβðjÞÞ
	

� 1

exp

"
�
�
φ*�φðj�1Þ�2

2ω2
1

#:

c. The parameter U was sampled from U�Uniformð0;1Þ.
If rφ > U; then φðjÞ ¼ φ* otherwise φðjÞ ¼ φðj�1Þ.

5. τðjÞ given θ'ðjÞ; βðjÞ and φðjÞ was generated by implementing the following
steps:

a. It was proposed that τ*~ Gamma ðδ þ τðj�1Þ;ω þ τðj�1ÞÞ.
The proposal distribution for τ* was:

Jτðτ*Þ¼ 1

ðωþ τðj�1ÞÞðδþτðj�1ÞÞΓðδþ τðj�1ÞÞ
ðτ*Þðδþτðj�1Þ�1Þexp

�
� τ*

ωþ τðj�1Þ

�
; τ*

2 ð0; ∞Þ:
where δþ τðj�1Þ > 0 and ωþ τðj�1Þ are shape and scale, respectively.

b. The acceptance ratio (probability) for the parameter τwas as follows.

rτ ¼
Pðθ'ðjÞ;βðjÞ;φðjÞ;τ*



~θÞ
Pðθ'ðjÞ;βðjÞ;φðjÞ;τðj�1Þ

~θ�xJτ

�
τðj�1Þ�

Jτðτ*Þ

∝



τ*IþφðjÞM


�1

2 exp
�
�1
2
ðθ'ðjÞ �XβðjÞÞT ðτ*IþφðjÞMÞ�1ðθ'ðjÞ �XβðjÞÞ

	


τðj�1ÞIþφðjÞM



�1
2 exp

�
�1
2
ðθ'ðjÞ �XβðjÞÞT�τðj�1ÞIþφðjÞM

��1ðθ'ðjÞ �XβðjÞÞ
	

x

��
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ðτ*Þ2

	�1

��
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ðK�1Þ
��
τðj�1Þ�2	�1 x

1

ðc0þτ*Þ2
1�

c0þτðj�1Þ�2
x

�
τðj�1Þ�ðδþτðj�1Þ�1Þexp

�
� τðj�1Þ

ωþτðj�1Þ

�
ðτ*Þðδþτðj�1Þ�1Þexp

�
� τ*

ωþτðj�1Þ

� :

c. The parameter U was sampled from U�Uniformð0;1Þ.
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If rτ > U; then τðjÞ ¼ τ* otherwise τðjÞ ¼ τðj�1Þ.

6. Steps 2, 3, 4and 5 were repeated until the chains reached
convergence.

4. Empirical results

Simulated data and case study used to estimate the parameters are
presented in this section.
4.1. Simulation study

A simulation study was performed for the HBDS model to confirm the
validity of programming using R. Thirty studies (n ¼ 30) with two
dependent groups and eight covariates (p ¼ 8) were simulated to obtain
the so-called simulated effect sizes.

The steps involved to conduct the simulation study can be described
as follows.

1. The value of a positive real number (τ) was fixed.
2. The value of φ given τ was calculated from the uniform distribution

with the minimum and maximum values are � τ2
ðK�1Þ and τ2,

respectively.
3. Matrices bpx1 and Dpxp were fixed, where p is the number of covariates.

A vector of parameters βpx1 was generated from the multivariate
normal distribution with mean bpx1 and variance-covariance matrix
Dpxp.

4. The matrix ðXnxpÞ and identity matrix ðInxnÞ were constructed. Pa-
rameters θ'nx1 were then generated from the multivariate normal
distribution, with mean Xnxpβpx1 and variance-covariance matrix τ2Iþ
φM:
Table 1. The true values of τ2;φ; β0; ::::; β7; θ
'
1; ::::; θ

'
30 and results of the simulated eff

True value of τ2

τ2 ¼ 1.2

True value of φ

φ ¼ 0.347

True value of β0; ::::β7
β0 ¼ 0:9753 β1 ¼ 0.9571

β4 ¼ 1.0491 β5 ¼ 1.0149

True value of θ'1; :::; θ'30

θ'1 ¼ 4.3092 θ'2 ¼ 5.8636

θ'5 ¼ 8.0226 θ'6 ¼ 8.0265

θ'9 ¼ 6.5337 θ'10 ¼ 4.9341

θ'13 ¼ 4.2838 θ'14 ¼ 4.7533

θ'17 ¼ 7.1009 θ'18 ¼ 4.2994

θ'21 ¼ 4.2967 θ'22 ¼ 4.2911

θ'25 ¼ 8.0322 θ'26 ¼ 8.0403

θ'29 ¼ 4.9734 θ'30 ¼ 4.9614

Simulated effects sizes of θ'1; :::; θ'30

~θ1 ¼ 4.2964 ~θ2 ¼ 5.8364

~θ5 ¼ 8.0108 ~θ6 ¼ 8.0179

~θ9 ¼ 6.4914 ~θ10 ¼ 4.9184

~θ13 ¼ 4.2183 ~θ14 ¼ 4.7967

~θ17 ¼ 7.1052 ~θ18 ¼ 4.2995

~θ21 ¼ 4.2982 ~θ22 ¼ 4.2811

~θ25 ¼ 8.0303 ~θ26 ¼ 8.0418

~θ29 ¼ 4.9857 ~θ30 ¼ 4.9446
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5. The variance-covariance matrix ðVðlÞnxnÞ was fixed where l is the

number of dependent groups. The effects size vector ð~θÞ was gener-
ated from the multivariate normal distribution, with mean θ'nx1 and
variance-covariance matrix ðVnxnÞ.

10,000 independent samples were simulated following the given
steps to obtain the values of parameters τ;φ; β0; ::::; β7; θ

'
1; ::::; θ

'
30 and ~θ1;

::::~θ30. The resulting simulated parameters are given in Table 1.
Furthermore, the values of τ;φ; β0; ::::; β7; θ

'
1; ::::; θ

'
30 were considered to

be the true values of the parameters and ~θ1; ::::~θ30 were considered to be
the simulated effects sizes for the study.

4.1.1. Estimation of parameters
The parameters for the HBDS model were estimated using the simu-

lated data ð~θ1;…; ~θ30Þ given in Table 1. It was expected that the estimated
values would be close to the true values. The Metropolis within Gibbs
formulation was used to approximate the joint posterior distribution of
parameters for the HBDS model. A cycle of 50,000 iterations was
executed, but only the last 10,000 iterations were of use in determining
the convergence of the chains of parameters.

The Geweke, Heidelberger&Welch (H-W), and Raftery& Lewis (R-L)
tests were the diagnostic tests used to determine whether the chains of
parameters in the HBDS model had converged. The results of the MCMC
convergence diagnostics using CODA and the values of the estimated
parameters are presented in Tables 2 and 3, respectively.

The z-scores for β0; …; β7 were all between -2 and 2 for the Geweke
diagnostic test, confirming convergence at a 5% significance level. The p-
value of β3(0.021) was lower than 0.05, indicating that the null hy-
pothesis was rejected. However, it was not consistent with other β's. The
stationarity tests for β0; …; β7 were passed. The dependence factors (I)
for the R-L diagnostic test were all below 5.0, which suggested that the
ects sizes ð~θ1; ::::~θ30Þ for the HBDS model.

β2 ¼ 1.0353 β3 ¼ 0.9799

β6 ¼ 1.0180 β7 ¼ 0.9454

θ'3 ¼ 4.2561 θ'4 ¼ 4.3704

θ'7 ¼ 7.1088 θ'8 ¼ 4.4449

θ'11 ¼ 4.9774 θ'12 ¼ 6.6576

θ'15 ¼ 7.4797 θ'16 ¼ 7.3650

θ'19 ¼ 4.9647 θ'20 ¼ 4.9702

θ'23 ¼ 4.3091 θ'24 ¼ 4.7636

θ'27 ¼ 7.1030 θ'28 ¼ 4.3720

~θ3 ¼ 4.2582 ~θ4 ¼ 4.7369

~θ7 ¼ 7.1082 ~θ8 ¼ 4.3724

~θ11 ¼ 4.9896 ~θ12 ¼ 6.6690

~θ15 ¼ 7.4988 ~θ16 ¼ 7.3506

~θ19 ¼ 4.9587 ~θ20 ¼ 4.9738

~θ23 ¼ 4.2944 ~θ24 ¼ 4.7237

~θ27 ¼ 7.0955 ~θ28 ¼ 4.3435



Table 2. The MCMC convergence diagnostics for τ;φ; β0;…; β7 using Geweke, H-W and R-L tests (the simulated effect sizes for HBDS model).

Test
Variable

Geweke H-W R-L

τ z-score
-0.3947

Stationarity test: passed p-value: 0.195 Dependence factor (I)
2.5

φ z-score
-0.5551

Stationarity test: passed p-value: 0.867 Dependence factor (I)
36.8

β0 z-score
-0.4393

Stationarity test: passed p-value: 0.4372 Dependence factor (I)
1.28

β1 z-score
-1.3295

Stationarity test: passed p-value: 0.3100 Dependence factor (I)
3.04

β2 z-score
-1.2546

Stationarity test: passed p-value: 0.471 Dependence factor (I)
1.11

β3 z-score
1.5083

Stationarity test: passed p-value: 0.0213 Dependence factor (I)
3.37

β4 z-score
-1.6836

Stationarity test: passed p-value: 0.2609 Dependence factor (I)
3.28

β5 z-score
0.8170

Stationarity test: passed p-value: 0.6736 Dependence factor (I)
2.70

β6 z-score
-1.5592

Stationarity test: passed p-value: 0.0512 Dependence factor (I)
1.21

β7 z-score
2.3017

Stationarity test: passed p-value: 0.1069 Dependence factor (I)
3.20

The z-score for τ was -0.3947 for the Geweke test. As this value lay between -2 and 2, it could be concluded that the chains of parameters had reached convergence at a
5% significance level. The stationarity test for τ was passed with a p-value of 0.195 for the H-W diagnostic test, under the null hypothesis that the MCMC chain was
stationary. The R-L test showed that the dependence factor (I) for τ was lower than 5.0, indicating that the sample was less correlated confirming the convergence.
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sample was less correlated. All of these results together suggested that the
chains of parameters had converged.

The z-score for φ was -0.5551 for the Geweke test. As this value was
between -2 and 2, it could be concluded that the chains of parameters had
reached convergence at a 5% significance level. However, the p-value of
φ was 0.013 for the H-W diagnostic test, indicating the null hypothesis
was rejected. The R-L test showed that the dependence factor (I) for φ
was more than 5.0, indicating that the sample was highly correlated. This
showed that the chains of parameters were not convergence.

4.1.2. Estimation results
The estimated values of τ; φ; β0; :::; β7 and θ'1; :::; θ

'
30; together with

corresponding 95% credible intervals (CrIs) and standard deviations (SD)
are presented below. This data will be used to draw conclusions about the
parameters for the model. Table 3 shows the results of parameter esti-
mates obtained using the Metropolis within Gibbs algorithm under the
assumption of a dependence structure on the HBDS model.

As can be seen from Table 3, the estimated value of τ was close to the
true value. Moreover, from the first and second columns of Table 3, the
estimated values of some parameters β's were not very close to the true
values. Some of standard deviations are quite large compare to their
point estimates. This indicated that the data was spread out over a large
range of values. However, all of the estimated values of β's and their
corresponding true values lay within of their credible interval. This
indicated that a 95% the true value will lie within the range.

For example, the estimated value of τ was 1.12, associated with the
95% CrI (0.7133, 2.6653). This was close to the true value of τ2 (1.2). The

estimated value of the intercept ðbβ0Þwas 1.0508, associated with its 95%
CrI (-3.0193, 5.273). This shows that the true value of the intercept, β0
(0.9753) lay within the 95% credible interval of bβ0.

The estimated value of φ (7.57) was not close to the true value (0.347)
and the true value was not lay within the credible interval of the esti-
mated parameter of φ (density plot of φ can be seen in Appendix). This
issue might likely happen as when the parameters were generated, the
τ2I þ φM matrix became semi-positive definite. Chivers (2013) devel-
oped the "MHadaptive" package (http://cran.r-project.org/web/packag
es/MHadaptive/MHadaptive.pdf) in order to overcome this problem.
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This package was used by forcing semi-positive definite matrix, τ2I þ φM
to be positive definite. However, the elements of matrix τ2I þ φM were
changed. In consequences, the matrix was not similar with the original
matrix. Even though the estimator of φ showed that the statistics per-
formance were not really good as expected, it was not consistent with
other parameters.

Figure 1 displays the trace plots of β0; ::::; β7. These figures show
that the final 10,000 iterations for the chains of parameters were rela-
tively stable with very small fluctuations only, confirming convergence.
The marginal posterior densities of β0, β1, β2, β3, β4, β5, β6 and β7 which
are shown in Figure 2 and labelled V1, V2, V3, V4, V5, V6, V7 and V8,
respectively, are unimodal and symmetric.

Figure 3 shows that the density of τ was right-skewwith a mean value
of 1.12 as τ is an log-logistic distribution. The trace plot of τ is displayed
in Figure 4. This figure shows that the chains of τ mixed relatively well
with some fluctuations, confirming the convergence. Moreover, the
acceptance rate for τ was 71.9%. This indicated that the chain moves
rapidly across the whole distribution, without getting stuck in any one
place.
4.2. Case study: application the HBDS to the native language vocabulary
data

The Metropolis within Gibbs algorithm for the HBDS model was
applied to the data presented by Stevens and Taylor (2009). The results
obtained from this approach were compared to the results found by
Stevens and Taylor (2009) which used a numerical approach. The pur-
pose was to determine whether the Metropolis within Gibbs algorithm
can be used to approximate the joint posterior of all parameters for the
HBDS model by the implementation to the data.

4.2.1. Estimations of parameters
A total of 50,000 iterations were executed, but only the last 10,000

iterations were of use in determining the convergence of the parameters.
The Geweke, Heidelberger & Welch (H-W), and Raftery & Lewis (R-L)
tests were the diagnostic tests used to determine whether the chains of
parameters had converged.

http://cran.r-project.org/web/packages/MHadaptive/MHadaptive.pdf
http://cran.r-project.org/web/packages/MHadaptive/MHadaptive.pdf


Table 3. Estimated parameters for the HBDS model using the Metropolis within Gibbs (simulated data).

True value Estimated value of τ and φ with the 95% CrI and SD

τ ¼ 1.2 bτ ¼ 1.12 with (0.7133, 2.6653) and 0.4229

φ ¼ 0.347 bφ ¼ 7.57 with (7.006, 8.373) and 0.4583

Estimated value of β0;…;β7with the 95% CrI and SD

Parameter estimates 95 % CrI SD

β0 ¼ 0.9753 bβ0 ¼ 1.0508 (-3.0193, 5.273) 2.1134

β1 ¼ 0.9571 bβ1 ¼ 1.0190 (-1.3613, 3.336) 1.2122

β2 ¼ 1.0353 bβ2 ¼ 1.0326 (-4.5219, 6.590) 2.8610

β3 ¼ 1.0503 bβ3 ¼ 0.9888 (-1.9723, 3.956) 1.5014

β4 ¼ 0.9799 bβ4 ¼ 0.9882 (-0.9972, 2.908) 0.9810

β5 ¼ 1.0491 bβ5 ¼ 1.0237 (-2.4082, 4.369) 1.7205

β6 ¼ 1.0180 bβ6 ¼ 0.9442 (-4.5225, 6.414) 2.7815

β7 ¼ 0.9454 bβ7 ¼ 0.9241 (-0.7259, 2.578) 0.8498

θ'1, …, θ'30 Estimated value of θ'1;…; θ'30 with the 95% CrI and SD

θ'1 ¼ 4.3092 bθ '1 ¼ 4.276 (2.252, 6.276) 1.0349

θ'2 ¼ 5.8636 bθ '2 ¼ 5.842 (3.023, 8.638) 1.4272

θ'3 ¼ 4.2561 bθ '3 ¼ 4. 261 (1.554, 6.964) 1.3765

~θ4 ¼ 4.7519 bθ '4 ¼ 4. 727 (2.969, 6.437) 0.8985

θ'5 ¼ 8.0226 bθ '5 ¼ 8.037 (5.446, 10.615) 1.3260

θ'6 ¼ 8.0265 bθ '6 ¼ 8.021 (6.229, 9.815) 0.9146

θ'7 ¼ 7.1088 bθ '7 ¼ 7.101 (5.299, 8.883) 0.9141

θ'8 ¼ 4.3704 bθ '8 ¼ 4.349 (1.986, 6.716) 1.2236

θ'9 ¼ 6.5337 bθ '9 ¼ 6.462 (3.378, 9.552) 1.5997

θ'10 ¼ 4.9341 bθ '10 ¼ 4.918 (2.832, 7.037) 1.0903

θ'11 ¼ 4.9774 bθ '11 ¼ 5.002 (3.440, 6.565) 0.7926

θ'12 ¼ 6.6576 bθ '12 ¼ 6.646 (4.878, 8.492) 0.9336

θ'13 ¼ 4.2838 bθ '13 ¼ 4.258 (2.333, 6.281) 1.0038

θ'14 ¼ 4.7533 bθ '14 ¼ 4.737 (2.588, 6.888) 1.1091

θ'15 ¼ 7.4797 bθ '15 ¼ 7.438 (5.021, 9.886) 1.2498

θ'16 ¼ 7.3650 bθ '16 ¼ 7.319 (4.847, 9.835) 1.2827

θ'17 ¼ 7.1009 bθ '17 ¼ 7.086 (5.000, 9.141) 1.0607

θ'18 ¼ 4.2994 bθ '18 ¼ 4.264 (2.326, 6.201) 0.9906

θ'19 ¼ 4.9647 bθ '19 ¼ 4.910 (3.290, 6.519) 0.8162

θ'20 ¼ 4.9702 bθ '20 ¼ 4.924 (3.166, 6.686) 0.8845

θ'21 ¼ 4.2967 bθ '21 ¼ 4.294 (3.063, 5.582) 0.6383

θ'22 ¼ 4.2911 bθ '22 ¼ 4.279 (2.675, 5.872) 0.8072

θ'23 ¼ 4.3091 bθ '23 ¼ 4.299 (2.274, 6.324) 1.0325

θ'24 ¼ 4.7636 bθ '24 ¼ 4.719 (2.550, 6.936) 1.1381

θ'25 ¼ 8.0322 bθ '25 ¼ 8.036 (6.417,9.629) 0.8150

θ'26 ¼ 8.0403 bθ '26 ¼ 8.034 (6.686, 9.356) 0.6830

θ'27 ¼ 7.1030 bθ '27 ¼ 7.097 (5.610, 8.606) 0.7662

θ'28 ¼ 4.3720 bθ '28 ¼ 4.350 (1.913, 6.870) 1.2654

θ'29 ¼ 4.9734 bθ '29 ¼ 4.934 (3.016, 6.843) 0.9789

θ'30 ¼ 4.9614 bθ '30 ¼ 4.923 (3.541, 6.322) 0.7062
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Figure 1. Trace plots of β0; :::; β7 for the HBDS model.

Figure 2. Density plots of β0; :::; β7 for the HBDS model.
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Table 4 shows the results of the convergence diagnostic tests of pa-
rameters for HBDS model. The z-score of τ2 was 0.3726. As this value lay
between -2 and 2, it could be concluded that the τ2 convergence at a 5%
significance level. The p-value of τ2 was 0.525. This confirmed that the
null hypothesis of τ2 was not rejected. The stationarity and half-width
9

tests were passed for the H-W diagnostic. The dependence factor (I) for
the R-L was lower than 5, indicating a less correlated samples, it was
likely that the convergence of the chains for τ2 had been achieved.

The z-scores of parameters ðβ0; :::; β5Þwere consistent between -2 and
2 for the Geweke diagnostic tests, confirming the chains of parameters



Figure 3. Density plot of τ for the HBDS model.

Figure 4. Trace plot of τ for the HBDS model.
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reached convergence at a 5% significance level. Even though the p-value
of β2 (0.99) was larger than 0.95, indicating the null hypothesis was
rejected, this was not consistent with the p-value of other β's. Moreover,
the stationarity tests for all parameters were passed after discarding 50%
of the chains. The half-width tests were also passed. Even though the
dependence factor for β2 greater than 5 the dependence factors (I) other
parameters were lower than 5 for the R-L diagnostic test, suggesting that
the sample was less correlated. Together all of these diagnostic tests
indicated that the chains for β0, β1, β3, β4, β5 had converged.

The dependence factor (I) of φ for the R-L test was higher than 5,
indicating a highly correlated samples. However, it did not indicate by
other diagnostic tests for φ. The z-score of φ was 0.7225. This value lay
between -2 and 2, confirming the convergence at a 5% significance level.
The p-value of φ was 0.768. This confirmed that the null hypothesis of φ
Table 4. MCMC convergence diagnostics for values of φ; τ2; β0; :::; β5 for the HBDS m

Test
Variable

Geweke H-W

τ2 z-score
0.3726

Station
Half-w
Half-w

φ z-score
0.7225

Station
Half-w
Half-w

β0 z-score
-1.0855

Station
Half-w
Half-w

β1 z-score
-1.8605

Station
Half-w
Half-w

β2 z-score
-0.1602

Station
Half-w
Half-w

β3 z-score
-1.1828

Station
Half-w
Half-w

β4 z-score
-0.1625

Station
Half-w
Half-w

β5 z-score
-0.9618

Station
Half-w
Half-w
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was not rejected. The stationarity and half-width tests were passed for the
H-W diagnostic. It was likely to conclude that the convergence of the
chains for φ had been achieved.

4.2.2. Estimation results
The parameter estimates for φ; τ2 β0; :::; β5, and their associated

credible intervals and standard deviations are presented in Table 5. The
point estimate of τ2 was 0.7942, associated with a 95% credible interval
of (0.2735, 1.9929). This was far from the value found by Stevens and
Taylor (2009) (0.2573), and its 95% credible interval (0, 0.6241).

The point estimate of φ and its credible interval obtained using the
Metropolis within Gibbs was also far from the result obtained by Stevens
and Taylor (2009). The point estimate of the intercepts ðβ0Þ obtained
using this approach was 0.5066, and its credible interval (0.4073, 0.744),
was tighter than the result obtained by Stevens and Taylor (2009) indi-
cating more precise for the populationmean effect size (intercepts). From
the application of the model to the data, it shown only 50.6% the
native-language vocabulary aids were effective as second language
reading comprehension aids.

The results obtained by the use of the Metropolis within Gibbs to
approximate the parameters in the HBDS model by applying the Stevens
and Taylor's (2009) data were not really good as expected. This issue
might likely happen as when the parameters were generated, the τ2I þ
φM matrix became semi-positive definite, although the restricted con-
dition for parameter φ given τ (Stevens and Taylor, 2009) had been
implemented. "MHadaptive" package (http://cran.r-project.org/web/pa
ckages/MHadaptive/MHadaptive.pdf) in order to overcome this prob-
lem was also implemented by forcing the positive semidefinite matrix,
τ2I þ φM to be positive definite. However, the elements of matrix were
changed. Forcing the semi-positive definite matrix to be a positive defi-
nite matrix however, could create new matrix which was not similar to
the original matrix.

The density plot displayed in panel (a) of Figure 5 shows that the
marginal posterior density of β0 (intercept) was symmetric. This in-
dicates that β0 was normally distributed. Moreover, the trace plot dis-
played in panel (b) of Figure 5 shows that the last 10,000 iterations in the
estimation of β0 had relatively good mixing, suggesting that the chains
had converged.
odel (case study).

R-L

arity test: passed p-value: 0.525
idth test: passed
idth: 0.0131

Dependence factor (I)
1.35

arity test: passed p-value: 0.768
idth test: passed
idth: 2.96

Dependence factor (I)
52.1

arity test: passed p-value: 0.755
idth test: passed
idth: 0.0077

Dependence factor (I)
1.03

arity test: passed p-value: 0.359
idth test: passed
idth: 0.0237

Dependence factor (I)
0.99

arity test: passed p-value: 0.990
idth test: passed
idth: 0.0256

Dependence factor (I)
6.36

arity test: passed p-value: 0.466
idth test: passed
idth: 0.0234

Dependence factor (I)
1.07

arity test: passed p-value: 0.769
idth test: passed
idth: 0.0144

Dependence factor (I)
1.04

arity test: passed p-value: 0.940
idth test: passed
idth: 0.0229

Dependence factor (I)
1.01

http://cran.r-project.org/web/packages/MHadaptive/MHadaptive.pdf
http://cran.r-project.org/web/packages/MHadaptive/MHadaptive.pdf


Table 5. Parameter estimates for the HBDS model using the Metropolis within Gibbs (case study).

Estimate result of τ2 with the 95% CrI and SD

bτ2 ¼ 0.7942, CrI (0.2735, 1.9929), SD ¼ 0.489bτ2 ¼ 0.2573, CrI (0, 0.6241), SD ¼ 0.1834 (Stevens and Taylor, 2009)

Estimate result of φ with the 95% CrI and SDbφ ¼ 3.3671, CrI (2.676, 4.053), SD ¼ 3.836bφ ¼ 0.1117, CrI (0, 0.4472), SD ¼ 0.1678 (Stevens and Taylor, 2009)

Estimates results of β0;…;β5with the 95% CrI and SD

Parameter
Estimates

95 % CrI SD

bβ0 ¼ 0.5066 (0.6280) (Stevens) (0.4037, 0.7444)
(0.2979, 0.9581) (Stevens)

0.2274
0.1650 (Stevens)bβ1 ¼ -0.6322 (-1.0699) (Stevens) (-1.9459, 0.1328) 1.1513

bβ2 ¼ -0.2953 (-0.2184) (Stevens) (-0.7733, 0.2608) 0.3423

bβ3 ¼ 0.2985 (0.1368) (Stevens) (-0.3606, 0.9554) 0.7968

bβ4 ¼ 1.1143 (0.7116) (Stevens) (-0.1175, 0.8474) 0.5146

bβ5 ¼ 0.6968 (0.4562) (Stevens) (-0.0827, 1.2247) 0.6946

Figure 5. (a) Density plot of β0 and (b) trace plot of β0 (case study).
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5. Conclusion

This paper discussed the hierarchical Bayesian delta splitting (HBDS)
model. This model was used to obtain overall conclusions in meta-
analysis by combining results from several studies. These models could
accommodate heterogeneity that arose in the meta-analysis due to the
different outcomes or treatments occurring in each study under consid-
eration. The existence of correlations within studies and between studies
arising due to the dependence structure was assumed in the model.

The validity of the programming to estimate parameters for the HBDS
model was confirmed using the simulated data. The joint posterior dis-
tributions of all parameters for the models were derived using the
Metropolis within Gibbs algorithm. The formula for the posterior dis-
tribution was implemented in R and the resulting code was executed in
order to estimate the parameters for the model.

The MCMC convergence diagnostics using CODA were applied to
determine whether the chains of parameters had converged. The
Geweke, Heidelberger &Welch, Raftery & Lewis diagnostic tests showed
that the chains of estimated parameters for the model had converged.
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The estimation of parameters using R code confirmed the consistency of
the parameters for the model. Although several of the point estimates
were not really close to their corresponding target values, they were still
inside their corresponding credible intervals. The true values of the pa-
rameters also lay inside the credible intervals, indicating that the pa-
rameters were consistent. Furthermore, the trace and density plots
showed that the parameters were stable and symmetric.

Even though, the results of parameter estimates obtained by the use of
the HBDS model not exactly with what we expect is probably due to
forcing the semi-positive definite matrix becomes positive, it is still likely
to conclude that the Metropolis within Gibbs algorithm is a useful
approach to approximate the joint posterior distribution of all parameters
for the hierarchical Bayesian models in meta-analysis.
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